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∆R

∆Ts

... to better understand climate 
sensitivity

e.g., Forster and Gregory, 2006; 
Lin et al., JQSRT, 2010; Murphy, 2010
all fluxes in this analysis are downward positive
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slope is -1±1

Wednesday, April 27, 2011



CERES top-of-atmosphere (TOA) net flux
SSF, 1-deg monthly avg., Ed. 2.5

all fluxes in this analysis are downward positive
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Use pre-computed kernels from Soden 
et al., 2008, see also Shell et al. [2008]
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∆R
q

∆Ts

Regress energy trapped by e.g., q 
vs. surface temperature
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Dessler et al., GRL, 2008
Dessler and Wong, J. Clim., 2009
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Temperature feedback
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albedo feedback
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Ts: 0.10 K

dRT: -0.46 W/m2

dRq: 0.22 W/m2

dRcloudLW: 0.15 W/m2

dRcloudSW: -0.22 W/m2

Explains 52% of variance
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Feedback
W/m2/K

20

EOF 1 EOF 2 EOF 3 EOF 4 EOF 5 total
dRT -2.91 -0.36 0.08 -0.17 0.24 -3.12
dRq 1.42 0.08 -0.03 -0.32 0.04 1.18
dRcloudLW 0.94 -0.71 0.22 -0.01 -0.02 0.42
dRcloudSW -1.36 1.47 0.29 -0.21 -0.08 0.11

tropical T

tropical +
extratrop T

extratropical T

52% 25% 12% 8% 3%
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22
Fig. 2 of Soden et al., 2008

Water vapor feedback is primarily a “tropical” phenomenon

Change in R per unit change in q(x,y,z): ∆R/∆q(x,y,z)
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22
Fig. 2 of Soden et al., 2008

Water vapor feedback is primarily a “tropical” phenomenon

Change in R per unit change in q(x,y,z): ∆R/∆q(x,y,z)

* WVF determined by tropical UT q
* tropical q controlled by tropical 
surface temperatures

e.g., Minschwaner and Dessler, 2004
* WV feedback is controlled by 
tropical surface T
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EOF 1 EOF 2 EOF 3 EOF 4 EOF 5 total
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tropical T

tropical +
extratrop T

extratropical T
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W/m2/K

Models are CMIP3 fully-
coupled control runs
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Effect of clouds on top-of-
atmosphere (TOA) flux

1) reduce incoming solar: cool
2) reduce outgoing IR: warm

net effect is the difference
between these effects

26

Wednesday, April 27, 2011



in today’s atmosphere, clouds 
reduce net energy in to the Earth 
by 20 W/m2 (also known as cloud 
radiative forcing)

how will this change in a future 
climate?

if changing clouds further reduce 
TOA downward net flux, this is a 
negative feedback

if changing clouds increase TOA 
downward net flux, this is a 
positive feedback
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LW EOF 1

SW EOF 1

Covariance of PC1 vs.
time series at each grid 
point of LW and SW energy 
trapped by clouds
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Conclusions
• Clouds that make it difficult to accurately 

determine how TOA flux anomaly varies 
with surface temperature
– they correlate poorly with surface T
– next steps: use EOF analysis to gain insight into 

the factors that regulate clouds
– goal is to improve estimate of clouds vs. T

• Water vapor and temperature are well 
behaved

29
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LW EOF 2

SW EOF 2
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LW EOF 3

SW EOF 3
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tropical T

tropical +
extratrop T

extratropical T
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slope is -1±1
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• start with cloud radiative forcing (∆CRF); 
change in TOA flux if clouds are removed

• ∆CRF = (∆Rclear-sky - ∆Rall-sky)

• ∆CRF can also be affected by changes in T, 
q, albedo, radiative forcing

• Soden et al. [2008] adjustment to get 
∆Rcloud from ∆CRF; see also Shell et al. [2008]

to determine ∆Rcloud

∆CRF∆Rcloud =
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cloud radiative forcing
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cloud radiative forcing

adjustment terms
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λcloud = 0.54±0.72 (2σ) W/m2/K (ECMWF)
         = 0.46±0.75 (2σ) W/m2/K (MERRA)
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A few lessons

• This scatter is real
• Another few years of data will not help
• We must study modes of cloud variations 

that are NOT related to surface T variations
– e.g., MJO

• Models correctly simulate the scatter

41
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λcloud = 0.74±0.20 W/m2/K; r2 = 4%MPI ECHAM5
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short-term cloud feedback intercomparison
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• The relation between TOA net flux and surface 
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• This work was supported by NASA grant NNX08AR27G 
to TAMU
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ECMWF-interim reanalysis
3/2000-2/2010
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Model TotalTotal Long waveLong wave Short waveShort wave
Long-term cloud 

feedback
Climate 

sensitivity

Cloud feedback r^2 Cloud feedback r^2 Cloud feedback r^2

FGOALS-g1.0 1.24±0.16 28%  0.92±0.08 48%  0.32±0.15 3% N/A 2.3
PCM 1.11±0.20 10%  0.52±0.11 7%  0.60±0.21 3% 0.18 2.1

IPSL-CM4 1.05±0.16 12%  1.17±0.13 21% -0.12±0.14 0.2% 1.06 4.4
INM-CM3.0 0.98±0.18 9%  0.77±0.10 15%  0.21±0.19 0.4% 0.35 2.1

UKMO-HadCM3 0.88±0.31 5%  0.57±0.15 9%  0.31±0.35 0.5% 1.08 3.3

ECHAM/MPI-OM 0.74±0.20 4%  0.97±0.09 27% -0.23±0.20 0.4% 1.18 3.4

CCSM3 0.62±0.26 2%  0.17±0.12 0.9%  0.45±0.25 1% 0.14 2.7
GFDL-CM2.1 0.34±0.20 0.9%  0.40±0.08 8% -0.06±0.23 0% 0.81 3.4
GFDL-CM2.0 0.15±0.20 0.2% -0.63±0.10 11%  0.78±0.21 4% 0.67 2.9

ECMWF-CERES 0.54±0.72 1.9%  0.43±0.45 3.0% 0.12±0.78 0.1% N/A N/A

MERRA-CERES 0.46±0.75 1.3%  0.27±0.47 1.2% 0.19±0.76 0.2% N/A N/A
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CRF = Rall-sky-Rclear-sky

CRF = 0
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CRF = Rall-sky-Rclear-sky

CRF ≠ 0
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